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FEM-simulation of laminar flame propagation.
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Abstract

In this paper, we present a numerical model for two-dimensional low-Mach-number flows of reactive ideal-gas

mixtures based on the fundamental conservation equations in primitive variables. Chemical reaction is described by a

detailed mechanism of elementary reactions, and detailed models for molecular transport and thermodynamics are

taken into account. The equations are discretized by a finite-element method on unstructured grids using the well

known Taylor–Hood element. A streamline-diffusion upwinding technique is used to avoid instabilities in convection-

dominated regions of the flowfield. A fully operative local adaptive mesh-refinement procedure is used. As numerical

examples we consider steadily propagating laminar flames in flat channels, which appear in a variety of shapes

depending on the boundary conditions.
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1. Introduction

Since the advent of the computer, numerical studies of laminar flames have been important for various
reasons: (1) to obtain enhanced insight into the complex physical and chemical structure of these flames, (2) to

provide numerical data for related experimental and theoretical investigations, (3) to develop, test and validate

physical models, e.g. for full or reduced chemical kinetic mechanisms, radiation models, soot models etc., (4) to

study details of the temporal and spatial structure of turbulent flames in the laminar-flamelet regime and (5) to

develop, test and validate numerical methods and algorithms suitable for combustion problems. Over the years,

the latter point has been addressed by numerous authors – it also is the main objective of the present work.
*Corresponding author. Tel.: +49-234-53-25914; fax: +49-234-32-14162.

E-mail address: lstm@lstm.ruhr-uni-bochum.de (B. Rogg).

URL: http://www.lstm.ruhr-uni-bochum.de.

0021-9991/$ - see front matter � 2003 Elsevier Inc. All rights reserved.

doi:10.1016/j.jcp.2003.10.033

mail to: lstm@lstm.ruhr-uni-bochum.de
http://www.lstm.ruhr-uni-bochum.de


Nomenclature

cp Frozen specific heat at a constant pressure for the gas mixture, J/(kg K)

cpi Frozen specific heat at a constant pressure for species i, J/(kg K)

DT Diffusion tensor in the energy equation, J/(m K s)

Di Mixture-averaged diffusion coefficient for species i, m2/s

Dij Binary diffusion coefficient for species i and j, m2/s

DT
i Thermal diffusion coefficient for species i, kg/(m s)

e Rate-of-strain tensor, Pa L

Ek Activation energy for the kth reaction, J/mol
g External force vector per unit mass, m/s2

G Scaling function in the artificial upwind terms of the conservation equations

h Mass-specific enthalpy of the gas mixture or mesh size, J/kg or m

hi Mass-specific enthalpy of species i, J/kg
HmðXÞ Function space of L2-functions with derivatives in L2ðXÞ up to mth-order
I Unit tensor

ji Molecular diffusion-flux vector for species i, kg/(m2s)

Ke Area of the eth finite element Xe

L2ðXÞ Lebesque space of square-integrable functions on the computational domain X
M Total number of chemical reactions, Mach number

nk Exponent of the temperature dependence of the frequency factor for the kth reaction

N Total number of chemical species present

p Pressure, Pa

p0 hydrodynamic part of p, Pa
p0 thermodynamic part of p, Pa
pm modified pressure, Pa
Pt Set of tth-order polynomials

q Molecular heat-flux vector, J/(m2s)

R0 Universal gas constant, J/(mol K)

s Surface traction vector, Pa m

S; SðtÞ speed of the moving (Galilean) frame of reference, m/s

SG ¼jSð1Þj Global speed of a steadily propagating flame, m/s

SL Laminar flame speed, m/s

t Time, s
T Temperature, K

v Velocity vector of the gas mixture with components u; v;w in x; y; z-direction, m/s

V Function space

V i Diffusion velocity of species i, m/s

VT
i Thermal diffusion velocity of species i, m/s

wi Rate of production of species i by chemical reactions, kg/(m3s)

W Mixture molecular weight, kg/mol

Wi Molecular weight of species i, kg/mol
Xi Mole fraction of species i
Yi Mass fraction of species i
C Boundary of the computational domain

g Global error indicator
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ge Local error indicator on element Xe

k Thermal conductivity of the gas mixture, J/(m K s)
ki Thermal conductivity of species i, J/(m K s)

l Coefficient of (shear) viscosity of the gas mixture, Pa s

li Coefficient of (shear) viscosity of species i, Pa s

mik Stoichiometric coefficient for species i appearing in reaction k, mik ¼ m00ik � m0ik
m0ik Stoichiometric coefficient for species i appearing as a reactant in reaction k
m00ik Stoichiometric coefficient for species i appearing as a product in reaction k
q Density of the gas mixture, kg/m3

qi Partial density of species i, kg/m3

/;w Weight functions

X Computational domain

Xe eth finite element

r Stress tensor, Pa

s viscous part of the stress tensor, Pa
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Whilst today the numerical treatment of one-dimensional (1D) laminar flames can be considered

standard – that of two-dimensional (2D) or even three-dimensional (3D) laminar flames cannot – at least

then not if moderately realistic models of molecular transport and chemistry are taken into account.

Originally work on 2D simulations employing detailed mechanisms of elementary reactions was put

forward by Smooke and coworkers in a series of papers [1–3,5,6] which differ in the formulation of the

governing equations, in the method of discretization and in the method of adaptive gridding. Due to its

well-known advantages, in the early papers the streamfunction–vorticity formulation of the governing
equations was favored though primitive-variable and vorticity–velocity formulations were also used. The

favored discretization method was the finite-difference method (FDM). In later papers also the finite-

volume method (FVM) [7–10] and the FEM (finite-element method) [14,15] were employed. In the past,

simulations of diffusion flames were most popular although also premixed flames [6,11], triple flames

[12,13] and ignition problems [4,16] were investigated. Table 1 summarizes distinctive details of 2D nu-

merical simulations of laminar reactive flows based on detailed mechanisms of elementary reactions – these

are the flows considered in the present paper. For the excessive number of publications on simulations

employing simple 1-step reaction or flamesheet models, the reader is referred to the well-known sources in
the literature.

Flames propagating in channels were investigated both experimentally [17,18] and numerically [18–20].

It has been observed that such flames can appear in a variety of shapes, depending on a number of

different physical or geometrical effects such as local quenching, burnt-gas vortex motion, Darrieus–

Landau instability, acoustics, mixture strength variations, and open or closed tube or channel ends. In

the present paper flames free of any of these effects, viz., steadily propagating laminar flames are con-

sidered; by definition, such flames propagate in open systems, under conditions of constant and uniform

thermodynamic pressure. First, for two-dimensional planar laminar low-Mach-number flows the gov-
erning equations are formulated in terms of primitive variables. Using a finite-element method based on

the Taylor–Hood element, these equations are then discretized on a triangulation of the computational

domain. Then the streamline-diffusion method for upwinding is described, followed by the description of

the local mesh refinement strategy. After a short presentation of the numerical methods for the solution

of the final difference equations, example numerical results are presented for various ozone decomposi-

tion and hydrogen-air flames. For both chemistry systems flame shapes of tulip and meniscus form are

predicted.



Table 1

Major publications on the simulation of 2D reactive flows employing detailed mechanisms of elementary reactions, excluding work

involving simple 1-step chemistry and flamesheet models

Formulation Method Element Refinement Flame Refs.

Streamf.–vorticity FD R U DF [1]

Streamf.–vorticity FD R S DF [2]

Primitive variables FD R S DF [3]

Primitive variables FD R S I [4]

Vorticity–velocity FD R S DF [5]

Vorticity–velocity FD R U DF, PF [6]

Primitive variables FV R/T – PF, DF [7]

Streamf.–vorticity FV R U PF [10]

Vorticity–velocity FD R S PF [11]

Primitive variables FD R – PTF [12]

Primitive variables FV R S STF [13]

Primitive variables FE T U PF, DF [14]

Primitive variables FE T U PPF, PTF [15]

The notation is: FD, finite differences; FV, finite volumes; FE, finite elements; R, rectangular; T, triangular; S, structured; U,

unstructured; I, ignition problem; DF, diffusion flame; SPF, stabilized premixed or decomposition flame; PPF, propagating premixed

or decomposition flame; STF, stabilized triple flame; PTF, propagating triple flame.
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2. Governing equations

2.1. Conservation equations

The reactive flows to be considered herein are those of ideal-gas mixtures of N chemical species, oc-

curring at low Mach numbers M . In terms of the notation summarized in the nomenclature, the relevant

conservation equations (see, e.g., [21,22]) are the overall continuity equation,

Dq
Dt

¼ �q r � v; ð1Þ

the momentum equations

q
Dv

Dt
¼ r � rþ qg; ð2Þ

the species equations

q
DYi
Dt

¼ �r � ji þ wi; i ¼ 1; . . . ;N � 1; ð3Þ

and the energy equation (assuming a low Mach number M and hence neglecting viscous dissipation, but

also neglecting radiative heat transfer and Dufour effect)

qcp
DT
Dt

¼ dp0
dt

þr � ðkrT Þ � rT �
XN
i¼1

cpiji �
XN
i¼1

hiwi: ð4Þ

In these equations, D=Dt denotes the substantial derivative. Assuming Newton�s law of viscosity and

Stokes� hypothesis, the stress tensor r is decomposed as

r ¼ �pmI þ 2le: ð5Þ
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Here e is the rate-of-strain tensor and pm is defined as pm :¼ p0 � 2
3
lr � v; p0 :¼ p � p0 denotes the hy-

drodynamic part of pressure which, in the absence of acoustic effects, is of the order of M2. The pressure p0
is a function of only time; it is also referred to as the thermodynamic (part of) pressure, and it is the leading
term in a series expansion of pressure with M as small expansion parameter [24].

In the diffusion flux of species i, ji ¼ qYiV i, the diffusion velocity V i is taken to be of the Fickian type,

i.e., V i ¼ �Di rðlnXiÞ. Hence

ji ¼ �qDiðWi=W ÞrXi ¼ �qDi rYi
�

þ Yi rðlnW Þ
�
; ð6Þ

i ¼ 1; . . . ;N ; here W is the mixture molecular weight,

W ¼
XN
i¼1

Yi
Wi

 !�1

: ð7Þ

The mass rate of production of species i, wi, is

wi ¼ Wi

XM
k¼1

ðm00ik � m0ikÞ
YN
j¼1

qYj
Wj

� �m0jk

kkðT Þ; i ¼ 1; . . . ;N � 1 ð8Þ

with the rate constants kk of the Arrhenius-type,

kk ¼ ATn exp

�
� Ek

R0T

�
; ð9Þ

cp ¼
PN

i¼1 Yicpi is the frozen constant-pressure specific heat of the mixture; p0 denotes the spatially uniform

thermodynamic pressure. The system of equations is closed by the ideal-gas thermal equation of state,

q ¼ p0W =ðR0T Þ: ð10Þ

Note that the mass fraction of species N , say, is given by YN ¼ 1�
PN�1

i¼1 Yi; hence there are only N � 1
species Eq. (3). Also note that transport coefficients and thermodynamic data are taken as variable – details

are outlined in Appendix A.

The assumption of low Mach number explicitly manifests itself in (4) and (10) – in (4) by the term dp0=dt
(which has replaced Dp=Dt) and by the absence of the viscous dissipation function, in (10) by p0 (which has

replaced p). What, as a consequence of the assumption, should generally be added [23–25] is an ordinary

differential equation for the generally unknown p0. However, for the open systems considered herein, this

equation reduces to dp0=dt ¼ 0 and, therefore, p0 is taken as a known constant.

For given constant p0, the governing Eqs. (1)–(4) form a hybrid hyperbolic-parabolic system of N þ 3
partial differential equations for the N þ 3 unknowns p0, the two velocity components, T , and Y1; . . . ; YN�1,

with the density q being viewed as a known function of these variables.
2.2. Other models

In the context of the model presented herein – and in all those models of Table 1 that are formulated in

primitive variables and in which the low or zero Mach number approximation is employed –, the governing

equations to be discretized and numerically solved are (1)–(4).

At this stage it is interesting and relevant to put low or zero Mach number models into a historical

perspective. It has been known for a long time that for reactive flows at low Mach numbers the thermo-

dynamic pressure, p0, can be taken as spatially uniform [21,27]. Rehm and Baum [23] were the first to derive

an ordinary differential equation for p0 thereby enabling that quantity to be calculated on theoretically
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sound grounds. Their approach was adopted by Majda [24,25] who – as others, see e.g. [26] –, employed a

Helmholtz splitting of the velocity field and furthermore considered acoustic effects.

In the model used by us and others, p0 would have to be determined from the same exact equation as in
the Rehm model (but here of course incorporating detailed models for thermodynamics, molecular

transport and chemistry) or, depending on the particular application, by some physically reasonable ap-

proximation. For the open systems considered herein, the Rehm equation for p0 reduces to dp0=dt ¼ 0 from

which p0 ¼ constant is obtained.
2.3. Galilei transformation

In the present paper numerical solutions for steadily propagating flames are sought. By definition, for
such flames the flame structure as a whole propagates in a certain well-defined direction, and both the

structure itself and its propagation velocity are independent of the initial conditions. For numerical sim-

ulations of such flames it is advantageous to subject the governing equations to a Galilei transformation,

and to solve the resulting (still time dependent) equations until in the Galilean frame of reference a steady

state is reached.

Inherently, problems in laminar-flame propagation are transient problems. From a numerical point of

view, they can efficiently be handled with a Galilei transformation. For instance, in terms of the original

coordinates x, y, z, t and in terms of new coordinates x0, y0, z0, t0, a Galilei transformation for a flame
propagating in the (positive or negative) x-direction is given by

ðx0; y 0; z0; t0Þ ¼ ðx�
Z t

0

Sdt; y; z; tÞ and ðu0; v0;w0Þ ¼ ðu� S; v;wÞ; ð11Þ

here S ¼ SðtÞ is the speed with which the Galilean frame of reference moves. In principle, there are no

constraints on the definition of S. Yet it seems advantageous to define it such that

(a) during a computation the flame remains embedded in the Galilean computational domain, and

(b) when a state of steady flame propagation is reached (o/=ot0 ¼ 0 for all dependent variables /), S should

become independent of time and identical to the then unique propagation speed of the flame structure.

Obviously, if a Galilei transformation is applied to the governing equations, also the boundary and

initial conditions are to be transformed according to (11). As an example, in the following important details
of a Galilei transformation are outlined for a flame propagating in the negative x-direction into a mixture of

fuel F and oxidizer, in a domain X that is left-bounded by an inlet CI, right-bounded by an outlet CO, top-

bounded by a wall CW and bottom-bounded by a line of symmetry CS such that

C ¼ CI [ CW [ CS [ CO; ð12Þ

see Fig. 2 top. For this domain, consider one of the transformed species conservation equations, say, that

for i ¼ F (fuel). Assuming zero diffusive mass flux across C and v0 � n ¼ 0 along CI, a macroscopic balance

of species mass, carried out on X, straightforwardly yields

S ¼
R
CO

qYF v0 � n
� �

ds�
R
X wYF dxþ

R
X

oqYF
ot0 dxR

CI
qYF ds

ð13Þ

as a natural definition for the instantaneous speed of the Galilean frame of reference and the flame

structure. However, in practical simulations – at least in the initial phase where the solution is far from

convergence – often meshes have been found to be too coarse for the integral
R
X wYF dx to be calculated with

sufficiently small discretization error resulting – in the worst case – in non-convergence of the numerical

scheme. Therefore, as an alternative to (13), the speed of the Galilean frame of reference has been taken as
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SðtÞ ¼ Sðt0Þ þ
X1
n¼1

ðDSÞn: ð14Þ

Here n is the number of the timestep and, for fixed y0 ¼ y 0T , ðDSÞn is the time rate of shift in the x0-direction
of the point ðx0T ; y0T Þ on a specified isotherm,

ðDSÞn ¼
dx0T
dt0

� �
n

for fixed y 0T : ð15Þ

Note that for flames that in the limit t0 ! 1 propagate steadily, limn!1ðDSÞn ¼ 0 upon overall convergence

of the numerical solution, hence the above requirement (b) is fulfilled. Furthermore, inspection of the

numerical results during the transient phase of the computations showed that requirement (a) was fulfilled

too.

A final remark is concerned with the selection of a point on a specified isotherm as indicator of the in-

stantaneous flame position. For the flames considered herein this choice has been found adequate. For
instance in the presence of strong temporally and spatially varying heat losses, isotherms may be strongly

wrinkled, bending forwards and backwards, leading to the prediction of multiple (and hence physically

meaningless) flame positions. For flames under such conditions, possibly a point on an isoline of the mass

fraction of a suitable chemical species could be selected to define the speed of the moving frame of reference.

Subsequently the superscript 0 will be dropped from the dependent and independent variables, and the

laboratory and the Galilean frame of reference will be distinguished from context.
2.4. Boundary conditions

The computational domain is denoted by X, its boundary by C, and the local normal and tangential unit

vector on C by n and t, respectively. The convention adopted in the following is that, (i), n points to the

outside of X and, (ii), the direction of t corresponds to counterclockwise circumnavigation of X.
For all dependent variables except p0 or pm, respectively, – why pressure is excluded will be said below –

provision is made for Dirichlet and non-Dirichlet boundary conditions; the latter include Neumann con-

ditions but also certain inflow and outflow conditions as well as various other conditions that can be

attributed to neither the Dirichlet nor the Neumann type. Let / stand for any velocity component, for any
species mass fraction or for temperature. Then, for each /, C is decomposed into the collection of all parts

on which Dirichlet conditions are imposed, C/
D, and into the collection of all parts on which non-Dirichlet

conditions are imposed, C/
N, i.e.,

C ¼ C/
D [ C/

N and ; ¼ C/
D \ C/

N for any /: ð16Þ

Although generally different / are associated with different C/
D and C/

N, for convenience of notation sub-

sequently the superscript relating to a particular / will be dropped from the C�s.

2.4.1. Conditions for continuity and momentum equations

The formulation of a Dirichlet or Neumann condition for a velocity component va is straightforward,

viz.,

vajCD
¼ v�a on CD ð17Þ

or

ova jCD
¼ v�a;n on CN; ð18Þ
on
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respectively, with v�a and v�a;n specified. Although (18) often is employed as an outflow boundary condition,

generally its use is not encouraged [28]. Obviously, if locally on C for both velocity components va Dirichlet

conditions are specified, then this is equivalent to specifying a Dirichlet condition for both the normal and
tangential component of velocity, vn :¼ v � n and vt :¼ v � t, respectively:

vn ¼ v�n and vt ¼ v�t ; both on CD: ð19Þ

Two further non-Dirichlet boundary conditions can be derived by considering the surface force per unit

area acting locally on C, i.e., the product r � n of the stress tensor r ¼ �pmI þ 2le and the normal unit

vector n. This surface force can readily be decomposed into components sn and ss in n-direction and t-
direction, respectively. In particular, for a piecewise planar boundary,

sn ¼ �pm þ 2l
ovn
on

and ss ¼ l
ovs
on

�
þ ovn

os

�
ð20Þ

is obtained. Either of the two equations given in (20) – either in its own right – constitutes a non-Dirichlet

boundary condition for velocity [28,29].

It is important to note that, for a specific problem at hand, care is to be taken to specify boundary

conditions for the continuity and the two momentum equations such that a well-posed problem results.
Various possible combinations of boundary conditions sufficient to ensure well-posedness have been dis-

cussed [28,29]. In summary, the findings relevant to the present work are:

(i) locally on C two boundary conditions for velocity are to be imposed as specified under (ii), (iii) and (iv);

(ii) these can be two Dirichlet conditions (17), or two Neumann conditions (18), or one Dirichlet condition

(17) and one Neumann condition (18);

(iii) alternatively, these can be two conditions (20), or one Dirichlet condition (17) and one condition (20);

(iv) alternatively, in (iii), the 1st and 2nd equation in (20)can be replaced by the 1st and 2nd equation,

respectively, in (19);
(v) specification of pressure on a part of C is to be accomplished by utilizing the 1st equation in (20).

2.4.2. Conditions for energy and species equations

For temperature, Dirichlet conditions correspond to specification of the temperature on CD, Neumann

conditions to specification of the normal component of the heat flux, qn ¼ q � n ¼ �koT=on on CN. Simi-

larly, for a mass fractions Yi or for any other measure of concentration of species i, Dirichlet conditions

correspond to specification of the respective concentration on CD, Neumann conditions to the specification

of the normal component of the respective diffusion flux ji;n ¼ ji � n; for the Fickian diffusion law assumed
herein, see (6), ji;n ¼ �qDiðWi=W ÞoXi=on on CN.

2.4.3. Conditions for propagating flames

After the Galilei transformation has been employed, the boundary conditions for the propagating flames

considered herein are at the inlet CI:

ujCI
¼ �S; vjCI

¼ 0; T jCI
¼ 300 K; YijCI

¼ Yi;I ; i ¼ 1; . . . ;N ; ð21Þ

at the axis of symmetry CS:

ou
on

jCS
¼ 0; vjCS

¼ 0; qnjCS
¼ 0; ji;njCS

¼ 0; i ¼ 1; . . . ;N ; ð22Þ

and at an isothermal wall CW:

ujCW
¼ �S; vjCW

¼ 0; T jCW
¼ 300 K; ji;njCW

¼ 0; i ¼ 1; . . . ;N : ð23Þ
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In the case of an adiabatic wall, the boundary condition for the energy equation is replaced by

qnjCW
¼ �k

oT
on

jCW
¼ 0: ð24Þ

At the outlet CO

snjCO
¼ �pm þ 2l

ou
ox

¼ 0;
ov
ox

jCO
¼ 0 ð25Þ

is specified together with homogeneous Neumann conditions for the energy equation and species equations.

2.5. Weak form of the conservation equations

The governing Eqs. (1)–(4), together with suitable boundary and initial conditions, represent an initial

boundary value problem. A variational or weak formulation of this problem is obtained by multiplying

each governing equation with a suitably defined weight function, say w or /, and by integrating the re-

sulting product over the computational domain.
It is important to note that for the governing equations alternative weak formulations exist, depending

on details of the application of Green�s theorem. Herein care has been taken that the individual weak

formulations remain free of derivatives of transport properties and density so that, as a consequence, in

the final discrete formulation cumbersome approximation and/or evaluation of such derivatives is

avoided.

Division of (1) by q, followed by multiplication of the resulting equation by a weight function w and

subsequent integration over X, yieldsZ
X
w

o lnq
ot

�
þr � v

�
dx ¼ �

Z
X
w v � r ln qdx 8w 2 H 1ðXÞ

and hence, after partial integration,Z
X
w

o lnq
ot

�
þr � v

�
dx�

Z
X
ln qr � ðwvÞdx ¼ �

Z
C
w ln qðv � nÞds 8w 2 H 1ðXÞ ð26Þ

as a weak form of the continuity equation. In (26), H 1 is the function space with the usual meaning, see

nomenclature. Similarly, a weak formulation for the momentum Eq. (2) is obtained asZ
X
/q

Dv

Dt

�
� g

�
dxþ

Z
X
r � r/dx ¼

Z
C
/ r � nds 8/ 2 V 1ðXÞ

or with (5) and r � n ¼ s, asZ
X
/q

Dv

Dt

�
� g

�
dx�

Z
X
pmr/dxþ

Z
X
2le � r/ dx ¼

Z
C
/sds 8/ 2 V 1ðXÞ: ð27Þ

In (27), V 1ðXÞ :¼ f/ 2 H 1ðXÞ with / jCD
¼ 0g. If locally and/or instantaneously the CD�s of the two velocity

components are not identical, then the weak formulation of the momentum equations would have to be

formulated for each component separately – a trivial matter.

Weak formulations of the energy and species equations are

Z
X
/ cpq

DT
Dt

dp0
dt

"
� wT þrT �

XN
i¼1

cp;iji

#
dxþ

Z
X
krT � r/dx ¼

Z
C
/krT � nds 8/ 2 V 1ðXÞ ð28Þ
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with

�wT :¼
XN
i¼1

hiwi ð29Þ

and Z
X
/ q

DYi
Dt

�
� wYi

�
dxþ

Z
X
ji � r/dx ¼ �

Z
C
/ji � nds 8/ 2 V 1ðXÞ; ð30Þ

respectively. The weak formulation for the two-dimensional axisymmetric case is summarized inAppendix C.

2.6. Principle of upwinding and scalar equations

Herein an artificial-diffusion method is employed to suppress numerical instabilities in convection-

dominated regions of the flow. Specifically, streamline diffusion [30,32] is added by disturbing the weight

functions of the convective terms in the conservation equations.

First, we consider the balance of only the convective and diffusive terms in the energy Eq. (4). For

simplicity of notation we restrict ourselves to the two-dimensional case but note that the generalization to
three space dimensions is straightforward. In terms of an isotropic diffusion tensor

DT ¼ kI ; ð31Þ

(4) is written as

cpqv � rT �r �DTrT ¼ 0: ð32Þ

Numerical stabilization is achieved by introducing the non-isotropic artificial diffusion tensor

D0
T ¼ kk

jvj2
u2 uv
uv v2

� �
ð33Þ

such that (32) renders

cpqv � rT �r � DT

�
þD0

T

�
rT ¼ 0: ð34Þ

It can be shown that D0
T introduces into (34) a diffusion-like effect that locally and instantaneously acts

(only and only) in the direction of the flow velocity. In (33) and hence (34), kk is a quantitative measure of

that effect; it therefore is referred to as artificial diffusivity. With

jT :¼ kk=ðqcpjvj2Þ ð35Þ

and

r/ � jT vv
TrT ¼ jT ðr/ � vÞðv � rT Þ; ð36Þ

and after application of Green�s theorem, we obtain as modified weak formulation of the energy equation

Z
X
qcpv � rT /½ þ jT v � r/�dxþ

Z
X
r/ � krT dx

¼
Z

/ jT qcpðv � rT Þðv � nÞdsþ
Z

/krT � nds 8/ 2 H 1ðXÞ: ð37Þ

C C
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In (37), two things are important to note which both are consequences of the application of Green�s the-
orem. First, rather than appearing in form of a diffusion-like term, artificial diffusion manifests itself by

effectively modifying the weight function of the convective term – the first term on the left hand side.
Second, the first term on the right hand side is an additional boundary integral – herein this term has been

found to be of paramount importance for the suppression of wiggles in predicted profiles along inflow

boundaries on which non-Dirichlet conditions are imposed.

To derive a local quantitative criterion for the coefficient jT and hence for the artificial thermal con-

ductivity kk, we write

kk ¼ GT cpqhjvj: ð38Þ

Here GT ¼ GT ðx; tÞ is a scaling function to be specified below and

h ¼
ffiffiffiffiffiffiffiffiffiffi
Ke=p

p
ð39Þ

represents the local mesh size; Ke denotes the area of that triangle Xe that is centered about x – see Section 3,

Eq. (52). The local and instantaneous magnitude of G is based on the idea that streamline diffusion should

be applied only in convection-dominated regions of X. The usual measure for the ratio of convective to
diffusive energy transport in Xe is the local Peclet number,

PeT ðkÞ ¼ cpqjvjh=k: ð40Þ

For PeT 6 PeT , no streamline diffusion is added. For PeT > PeT , k is replaced by kþ kk with kk such that

PeT ðkþ kkÞ ¼ PeT or kk ¼ �kþ ðcpqjvjhÞ=PeT , respectively. Hence, with (38),

GT ðx; tÞ ¼
1

PeT
� 1

PeT ðkÞ for PeT ðkÞ > PeT ;
0 otherwise



ð41Þ

is obtained. The expression for G given in (41) has the obvious advantage to be bounded even for strong
local dominance of convection when PeT ðkÞ ! 1. What remains is the specification of the upper bound

PeT . Following the well-known reasoning for the stability of the one-dimensional convection–diffusion

equation [32], herein PeT ;l ¼ 2 has been selected.

It is straightforward to verify that the implementation of the streamline upwinding just described into

the full energy Eq. (28) corresponds to replacing the integral
R
X /qcpðDT=DtÞdx there byZ

X
/qcp

oT
ot

�
þ qcpv � rT /½ þ jT v � r/�

�
dx�

Z
C
/ jT qcpðv � rT Þðv � nÞds: ð42Þ

The upwind-treatment of the species conservation equations is accomplished in a manner similar that for

the energy equation and hence is described only in short form. The relevant local Peclet number is

PeYiðDiÞ ¼ jvjh=Di; i ¼ 1; . . . ;N : ð43Þ

For the artificial mixture-averaged diffusion coefficient Dk;i for species i we write

qDk;i ¼ GYihqjvj; ð44Þ

and hence obtain for the scaling functions in the species mass conservation equations

GYiðx; tÞ ¼
1

PeYi
� 1

PeYi ðDiÞ for PeYiðDiÞ > PeYi ;

0 otherwise:

(
ð45Þ

Here PeYi indicates the upper bound for the local Peclet number.
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2.7. Momentum equations

In the following exemple for all three momentum equations we only consider the equation in x-direction.
Consistent with (34), the modified momentum equation reads

qv � ru ¼ �rpm þr � 2lex
�

þ juvv
Tru

�
þ qgx; ð46Þ

where

ex ¼ exx; exy
� �T

; ju ¼
lk

jvj2
: ð47Þ

Proceeding as in the previous section, for the modified weak formulation of the momentum equation we

obtainZ
X
qv � ru /ð þ juv � r/Þdxþ

Z
X

2lex � r/

�
� pm

o/
ox

� qgx/
�

dx

¼
Z
C
/ ju qðv � ruÞðv � nÞdsþ

Z
C
/sx ds 8/ 2 H 1ðXÞ: ð48Þ

To obtain a local quantitative criterion for the artificial viscosity lk, we write

lk ¼ GUqhjvj; ReðlÞ ¼ qjvjh
l

ð49Þ

with the local Reynolds number ReðlÞ and

GU ðx; tÞ ¼
1

Re
� 1

ReðlÞ for ReðlÞ > Re;
0 otherwise:



ð50Þ

Here Re indicates the upper bound for the local Reynolds number.
3. Finite-element formulation

3.1. Preliminaries

On X, each dependent variable U , U ¼ u; v; pm; T ; Y1; :::; YN�1, is approximated by a function Uh of the

form

Uh ¼ Uh
0 þ

XMU

k¼1

cU /h
U

� �
k
: ð51Þ

Here Uh
0 ðXÞ and /h

U ;kðXÞ are the global interpolation functions to be specified; the coefficients cU ;k are the

unknowns. Specifically, Uh
0 ðXÞ has to be selected such that it satisfies all non-homogeneous boundary

conditions that may be imposed on the variable U . For the computational domain X a triangulation Th is

defined which decomposes X into E triangular elements Xe such that

X ¼
[E
e¼1

Xe and ; ¼
\E
e¼1

Xe: ð52Þ
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Specifically, herein for Xe 2 Th the well-established triangular Taylor–Hood element is chosen which en-

sures stability as expressed in the Babu�ska–Brezzi condition. Thus, locally for pressure linear interpolation

functions are employed and quadratic interpolation functions for all other dependent variables.

3.2. Linearization and iteration

Herein three modes of iteration are distinguished: (i) timestepping, (ii), outer iterations for the convective

and reactive terms and, (iii) inner iterations for the solution of linear systems of equations. Timestepping

employs simple Euler-backward differences for all transient terms except for oq=ot – the treatment of the

latter is described separately below. Outer iterations for the convective terms are Picard iterations, whereas

outer iterations for the reaction terms are based on Newton iterations. Picard iterations are also employed
for the density, the transport properties and the thermodynamic data.

3.2.1. Chemical source terms

The chemical source terms wT ;wY1 ; . . . ;wYN�1
are known to be strongly non-linear and stiff, and hence

require linearization. Thus, in terms of the vector of scalars

U ¼ ðT ; Y1; . . . ; YN�1ÞT; ð53Þ

the source-term vector

wðUÞ ¼ ðwT ;wY1 ; . . . ;wYN�1
ÞT ð54Þ

is approximated as

w � w0 þ J � ðU �U0Þ; ð55Þ

where w0 ¼ wðU0Þ and where the Jacobian J ¼ JðU0Þ is

J ¼

owT
oT

owT
oY1

� � � owT
oYN�1

owY1
oT

owY1
oY1

� � � owY1
oYN�1

..

.
. . . ..

.

owYN�1

oT

owYN�1

oY1
� � � owYN�1

oYN�1

0
BBBBBB@

1
CCCCCCA
: ð56Þ

U0 denotes a known approximation to the vector of scalars such as the solution from the previous timestep

or from the previous outer iteration.

The Jacobian J is evaluated by numerical differentiation. To reduce the number of non-zero elements in

the species Jacobian matrix

Kij :¼
owi

oYj
; 16 i; j6N � 1; ð57Þ

three alternative approximations to Kij have been explored, viz.,

Kij � ðq=WjÞðowi=oCjÞ; ð58Þ
Kij � ðq=WjÞð1� XjÞðowi=oCjÞ; ð59Þ

and

Kij � mijðowi=oYjÞ ð60Þ
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with mij ¼ 0 for ðowi=oCjÞ ¼ 0 and mij ¼ 1 otherwise. In the context of (60) it is important to note that the

identification of zero elements mij can easily be achieved by inspection of the underlying reaction mecha-

nism and does not require the evaluation of owi=oCj. Note that although the three alternative approxi-
mations to the Jacobian are different, they have zero elements in identical locations. The derivation of the

three alternatives is given in Appendix D.

3.2.2. Time-discretization

The time derivatives of all dependent variables, except that of the density q, are expressed in terms of

backward Euler differences. The term o lnq=ot ¼ ð1=qÞoq=ot appearing in the weak-form continuity Eq. (26)

could be approximated by a backward Euler difference too, but for the steady solutions sought herein this

appears too cumbersome. An alternative would be dropping that term completely, but this has been found
to render the solution of the linear system much more difficult, resulting in long computational times.

Instead, herein the term is replaced by an artificial perturbation which approaches zero upon convergence

to steady propagation. To derive this perturbation, we take an approach similar to the artificial com-

pressibility concept, see e.g. [31], p. 144. Specifically, herein in (26) the term o lnq=ot is replaced by

0 ¼ c
q
ðpm � pmÞ �

c
qn
l�1

pnm;l
�

� pnm;l�1

�
; l ¼ 1; 2; . . . : ð61Þ

Here c is a positive constant of dimension s/m2, the subscript l denotes the lth Picard iteration, and the

superscript n the nth timestep. Thus the modified continuity equation becomes

c
qn
l�1

pnm;l
�

� pnm;l�1

�
þr � v ¼ �v � rðln qÞ: ð62Þ

It is important to note that the first term on the left-hand side of (62) is of no physical significance: it is to be

viewed as a perturbation that vanishes upon convergence of the Picard iterations (outer iterations), i.e.,
liml!1ðpnm;l � pnm;l�1Þ ! 0.

The value of c is to be specified on the basis of numerical experimentation; for the problems considered

herein, values in the range Oð10�9Þ6 c6Oð10�5Þ s/m2 have been found to work well. In particular, for c in
this range, the first term on the left-hand side of (62) has been found to have no influence, neither on the

number of Picard iterations nor on the number of timesteps required to obtain a steady solution. Fur-

thermore we have found that if the first term on the left-hand side of (62) is dropped, then the BCGSTAB

linear-system solver requires substantially more – sometimes excessive many – iterations.
3.3. Assembly

In terms of the overall vector of unknowns, U ¼ ðUv;UT ÞT where Uv ¼ ðu; v; pÞT and UT ¼ ðT;Y1; . . . ;
YN�1ÞT, the overall linear system to be solved is

A �U ¼ b: ð63Þ

Since for the density Picard iterations are employed, A is diagonal,

A ¼ Av 0

0 AT

� �
: ð64Þ

As a consequence, the overall linear system (63) can be decomposed into a fluidmechanical and a ther-

mochemical subsystem, viz.,

Av �Uv ¼ bv and AT �UT ¼ bT : ð65Þ



B. Michaelis, B. Rogg / Journal of Computational Physics 196 (2004) 417–447 431
Here

Av ¼
Auu Auv Aup

Avu Avv Avp

Apu Apv App

0
B@

1
CA ð66Þ

and

AT ¼

ATT ATY1 � � � ATYN�1

AY1T AY1Y1 � � � AY1YN�1

..

. ..
.

. . . ..
.

AYN�1T AYN�1Y1 � � � AYN�1YN�1

0
BBBBB@

1
CCCCCA: ð67Þ

The advantage of (65) over (63) is twofold. First, although with the BCGSTAB solver the total number of

iterations remains essentially unchanged, with (65) the computational cost per iteration step is substantially

reduced. Second, the formulation in (65) allows an effective splitting of operators by solving the fluidme-
chanical and thermochemical subsystems in succession. Within each subsystem or block, the governing

equations are solved simultaneously, i.e., the Picard approximations are applied simultaneously to all

equations pertaining to a block.

The linear subsystems (65) have been obtained by the usual assembly procedure according to which

Av ¼
PE

e¼1 Av;e, bv ¼
PE

e¼1 bv;e, AT ¼
PE

e¼1 AT ;e and bT ¼
PE

e¼1 bT ;e; here it is understood that the element

matrices and vectors are properly augmented by zeroes. The element matrices Av;e and AT ;e have the same

structure as (66) and (67), respectively; the corresponding element linear systems have the same form as

(64).
A further point is noteworthy. The element submatrices ATYi

e and AYiYj
e with i 6¼ j of AT ;e - and hence the

corresponding submatrices of the system matrix AT – are non-zero only and only because the linearization

of the chemical source terms is performed according to (55). To achieve further sparsity of the system

matrix, in these element matrices off-diagonal entries are neglected. Accordingly and consistently, in the

diagonal submatrices of AT ;e and hence AT , the off-diagonal contributions resulting from the linearization

of the chemical source terms are neglected.
4. Adaptive gridding

4.1. Refinement indicator

In this work we use an a posteriori error indicator to identify in the domain of integration regions where

the spatial discretization error is large or small, respectively. The derivation of the indicator is based on two

known properties of finite-element solution:

1. As described in the previous section, a finite-element approximation is composed of polynomial func-
tions that are taken piecewise over the elements. Consequently, the numerical solution is not smooth:

the normal derivative of a dependent variable jumps across the edge common to two adjacent elements.

The size of the jump is taken as a first measure for the local discretization error.

2. As described in Section 2, Green�s theorem is used in the derivation of the weak formulation of the gov-

erning equations. As a consequence, the residuals of the governing Eqs. (1)–(4), determined on the basis

of the finite-element solution, generally are not zero. Their size is taken as a second measure for the local

discretization error.
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For each of the governing Eqs. (1)–(4), a local a posteriori error indicator has been derived – details of the

derivation can be found in [15]. As an example, in the following the energy equation is considered. The

indicator ge;T on an element Xe – with area Ke, edges ce, and sidelengths Lce – is obtained as

ge;T ¼ C1

ffiffiffiffiffi
Ke

p
jjRh

T jjXe
þ C2

X
ce;in

ffiffiffiffiffiffi
Lce

p
jjdk oT

h
e

on
ejjce;in þ C3

X
ce;N

ffiffiffiffiffiffi
Lce

p
jj krT h � n
�

� qn
�
jjce;N ; e ¼ 1; . . . ;E:

ð68Þ

Here Rh
T denotes the residual of the energy equation as obtained by substituting the finite-element solution;

C1, C2 and C3 are empirical constants, and k � kX denotes the L2-norm,

kgkX :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ
X
g2 dX

s
: ð69Þ

The second term in (68) describes the jump in the normal derivatives across the inner edge ce;in common to

two adjacent elements. The third term takes into account that on Neumann boundaries ce;N the numerical

approximation does not necessarily fulfill exactly the boundary condition.

What remains to be specified are the dependent variables on which the adaptive gridding is to be based.

For instance, adaptive gridding can be based on one, several, or all dependent variables. Generally, a

weighted average of all dependent variables is taken as indicator:

ge :¼
X
all i

xige;i;
X
all i

xi ¼ 1; i ¼ u; v; p; T ; Y1; . . . ; YN�1: ð70Þ
4.2. Adaptation procedure

The refinement procedure involves the following general steps:
1. Obtain a converged solution on an initial or intermediate triangulation.

2. For each element evaluate the local indicator ge and the sum

g :¼
XE
e¼1

ge:

For the purpose of evaluation of the adaptation criteria, instead of any two elements that previously

were obtained by a green refinement [33], their father is considered with his indicator taken as the sum of

the two.

3. Sort indicators and hence cells according to magnitude such that

g1 6 g2 6 � � � 6 gE:

4. Prescribe percentages C and C and a maximum refinement level NA. Determine NC such thatPNC
e¼1 ge 6Cg and

PNCþ1

e¼1 ge > Cg, and mark the first NC elements for subsequent coarsening. Similarly,

determine NR such that
PE

e¼E�NRþ1 ge 6Cg and
PE

E�NR
ge > Cg, and mark the last NR elements for subse-

quent refinement.

5. If adaptation is required, apply the rules for mesh refinement and coarsening according to Kornhuber

and Roitzsch [33] and Wassenberg [34]. Note that, (i), the refinement rules are applied only to those el-

ements that have not yet reached the maximum refinement level and, (ii), a mesh is not allowed to be-

come coarser than the initial mesh.
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6. If the mesh has been adapted, assign interpolated values of the dependent variables to the new grid-

points, and restart the integration.

For combustion problems of the non-propagating type [15] (these are not the topic of the present paper

and therefore results are not included here) extensive testing of adaptivity and its effect on the solutions was
done. In particular, it was ensured that with the chosen parameter values there was no smearing or other

falsification of the solutions. Typical numerical values for the parameters are C ¼ 0:01 and C ¼ 0:5. A
typical maximum refinement level is NA ¼ 5, although in some cases up to 8 refinement levels were used to

ensure grid-independent results without artificial thickening of the flame.
5. Solution strategy

Fig. 1 shows a schematic flow diagram of the overall solution procedure. A computation is started with

an initial triangulationTh
0, an initial guess U0

0 and – if timestepping is required – an initial timestep size Dt0;
typical values for Dt0 are 10�7–10�6 s. Simpler combustion problems of the non-propagating type have been

found to work well without timestepping [15], but all the results presented below were obtained with

timestepping. For these calculations it was found, that the number of timesteps required to approach a
Fig. 1. Schematic flow diagram of the overall solution procedure.
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steady solution to a specific overall problem is independent of the work required at each timestep for the

solution of the underlying non-linear difference equations. Therefore, the Picard iterations were abandoned.

After each timestep, a convergence criterion is evaluated. As long as convergence has not yet been achieved,
(i), every Nbc timesteps the boundary conditions are updated according to Section 2.4 and, (ii), every Nag

timesteps the adaptive-gridding procedure is carried out. For problems with a steady-state solution, the

timestep size is gradually increased from its initial value up to an upper bound Dt to be specified. In general,

values of up to Dt ¼ 1020 s are possible. However, for the propagating flames considered in this paper,

updating of the speed of the frame of reference, S, and of the boundary conditions was found to require

values as small as 10�4 s for Dt combined with values of 3–5 for Nbc.

If, with Nbc ¼ 1, in five successive timesteps convergence has been achieved, the solution is adopted as the

solution to the steady-state problem.
6. Example results

The numerical results presented here have been obtained with the models of molecular transport and

thermodynamics outlined in Appendix A, and with the reaction mechanisms given in Appendix B.
6.1. Ozone flames

Presented here are results for ozone flames propagating steadily with global speed SG :¼j Sð1Þ j in a

planar, horizontal channel from right to left into a quiescent fresh mixture; behind a flame, hot combustion

products flow to the right. Due to the symmetry of the problem, only the upper half of the channel cor-

responding to the dashed part in Fig. 2, top, needs to be considered. Three different cases are studied. These

cases have in common that the fresh mixture far ahead of the flame contains no atomic oxygen, that the

initial ozone mass fraction is 0.25, that the unburnt gas temperature is 300 K and that the channel walls are

impermeable to all species. In all cases the plane of symmetry is located at y 0 ¼ 0, the wall at y0 ¼ 2:5 mm,
and the length of the domain of integration is 25 mm although, in most figures, only a portion is shown. It

has been ensured that this length is sufficient for the results to be independent of the placement of both the

inflow and the outflow boundary.

The cases differ in the wall conditions for velocity and temperature. Specifically, case I assumes no-slip

conditions for velocity and an isothermal wall at 300 K, case II no-slip conditions and an adiabatic wall;

case III corresponds to an adiabatic wall with slip conditions.

Figs. 2–5 pertain to case I. Here, as a consequence of the cold wall, local flame extinction occurs in the

vicinity of the wall leading to a meniscus-like flameshape – subsequently flames of such shape are referred to
as meniscus flames. Shown in Fig. 2, bottom, are the final mesh and a contour plot of the heat-release rate.

The mesh represents three levels of refinement, the number of elements is 5769, the number gridpoints

12,000.

For SG the value of 0,309 m/s has been obtained which is greater than the value of 0,283 m/s obtained for

the laminar flamespeed SL of the planar, effectively 1D, flame. The difference between SG and SL is best

explained by reference to Fig. 3 which shows the schematic of a curved flamefront with various velocities in

Galilean-transformed space. Specifically, in the figure the thermal-diffusional limit is assumed and the flame

is taken as a discontinuity of time-invariant shape. Just ahead of the flame the component of velocity
normal to the front is taken to be of constant magnitude SL; therefore, a variation of the upstream velocity

US with y is required such that US increases from the value SL at the plane of symmetry towards the wall.

Hence, since mass conservation requires SG to be a suitably defined cross-sectional average of US, SG is

greater than USðy ¼ 0Þ ¼ SL.



Fig. 2. Ozone flame propagating in a planar channel. Top: Geometry and computational domain. Bottom: Final mesh and contour

plot of heat-release rate.

Fig. 3. Schematic representation of a curved flamefront with velocities in Galilean-transformed space.

Fig. 4. Streamlines and heat-release rate for the ozone flame of case I. Top: in the Galilean ðx0; tÞ coordinate system. Bottom: in the

laboratory ðx; tÞ coordinate system.
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The effect of SG > SL on the flowfield can be seen from Fig. 4. In the top of the figure, streamlines are

plotted in the Galilean-transformed space, in the bottom streamlines in physical space. In the vicinity of the

symmetry plane, the Galilean streamlines show the divergence and convergence ahead and behind the



Fig. 5. Pressure and longitudinal component of velocity as a function of x0 at the plane of symmetry (left) and at the wall (right) and for

case I.
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flame, respectively, which is typical and well-known for flames with convex curvature; closer to the cold

wall, the streamlines are disturbed due to local flame quenching. The streamlines in physical space show
that, due to expansion, the flame pushes the fresh gases ahead of it, with a slip-through in the vicinity of the

wall; again, the latter is the result of local flame quenching at the cold wall.

The observed self-induced flow upstream of the flame has been termed ‘‘squish-flow’’ [19]. Its physical

origin can be discussed by reference to Fig. 5. There, on the left, pressure p and longitudinal velocity

component u are plotted vs. x on the axis of symmetry; on the right, p along the wall is plotted (recall:

u ¼ v ¼ 0 there). It can be seen, that on the axis the flow is decelerating from SG > SL to approximately SL,
which is accompanied by an accordingly weak pressure rise. Through the flame the usual strong pressure

drop and strong acceleration are observed. At the wall, the pressure drops continuously to a local minimum
behind the flame, which is consistent with a continuous acceleration of the flow close to the wall. The mild

pressure increase behind the flame is the result of the continuously accumulating convective heat loss

through the walls.

Figs. 6 and 7 pertain to case II: adiabatic walls but still no-slip conditions for velocity. In contrast to the

cold wall of case I, no heat losses occur to the wall; hence in the vicinity of the wall, no flame quenching

occurs and, as a consequence, a flame of tulip shape, termed ‘‘tulip flame’’ [19], results. The tulip flame and

the meniscus flame have in common that SG > SL. However, in this example, the tulip flame propagates

faster (SG ¼ 0:375 m/s) than the meniscus flame (SG ¼ 0:309 m/s). For the tulip flame, the squish-flow ahead
of the flame is is directed towards the axis of symmetry. The reason for the change in direction is the gas
Fig. 6. As Fig. 4 but for case II.



Fig. 7. As Fig. 5 but for case II.
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expansion near the wall. Because of the no-slip condition for velocity, expansion there does not result in

acceleration but in pressure rise. A pressure gradient towards the symmetry plane results, which induces the

observed direction of slip flow. The difference between the maximum pressure pmax (at the wall) and the

pressure in the undisturbed fresh mixture far ahead of the flame is found to be approximately 10 times

larger than for the meniscus flame of case I where pmax occurred on the axis.

To demonstrate the influence of the no-slip condition for velocity, we now consider case III corre-

sponding to adiabatic walls and slip conditions for velocity. Shown in Fig. 8, top and bottom, are, in the
familiar presentation of above, results for two flames, viz., streamlines and heat-release rate. Both flames

have been obtained for identical boundary conditions, but the initial conditions were different: for the

meniscus flame in the top picture, initially a convex flame shape was assumed, for the tulip flame in the
Fig. 8. As Fig. 4 but for case III.



Fig. 9. The influence of no-slip and slip wall condition on the adiabatic flame: pressure as a function of x0 at the plane of symmetry

(left) and at the wall (right).
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bottom picture, a concave shape. Thus, these results illustrate that for the boundary conditions of case III

the solution is not unique but depends on the initial conditions. Similar observations were made earlier [19],

though in these investigations a different geometry and simpler physical and numerical models were em-

ployed. It is important to note that for case III the boundary conditions at the symmetry plane and the wall
are formally identical. As a consequence, the wall can be viewed as another plane of symmetry and hence

each of the two flame shapes shown in Fig. 8 can be interpreted as representing one amplitude of a flame of

2D periodic shape and infinite extent. The results shown here represent the 2D counterpart of the hy-

drodynamic instability discovered by Darrieus and Landau which plays an important role in the expla-

nation of cellular flames [21]. The global flame speed SG is 0; 307 m/s.

To investigate the influence of the velocity boundary condition, it suggests itself to compare the meniscus

flames of Figs. 8(top) and 4 and the tulip flames of Figs. 8(bottom) and 7, respectively. To this end, in the

following attention is focused on the tulip flame. Shown in Fig. 9 are the profiles of pressure in the form
familiar from cases II and III. From the right picture it is seen that, as it is to be expected on physical

grounds, for slip conditions the local maximum of pressure at the wall nearly vanishes. As a consequence, in

comparison to the case with slip conditions, a substantially weaker squish flow to the axis results which in

turn implies the observed weaker curvature of the tulip flame. In particular, the local pressure excess at the

wall is so small that, in view of hydrodynamic instability, the location of maximum pressure may shift to the

axis, thereby inducing squish flow to the outside and bringing about the meniscus flame.
6.2. Hydrogen–oxygen flames

Various hydrogen–air flames have been computed, all with no-slip conditions at the wall. Two cases of

temperature boundary conditions have been distinguished, viz. (i) constant wall temperature TW and (ii)

adiabatic wall. For both cases computations with various values of the equivalence ratio were performed.
The computed flames are summarized in Table 2, where also SL is given.

As for the ozone flame, for adiabatic walls tulip flame shapes are predicted. However, in contrast to the

ozone flame, for constant wall temperature flame shapes are obtained that exhibit both tulip and meniscus

flame features.

In the following, first the tulip flames are discussed.

Shown in Fig. 10 is a sequence of flameshapes (again in terms of the heat-release rate) and flowfields for,

from top to bottom, / ¼ 0:5; 1; 2:5 and 5. It is seen that for the lowest value of / the flame tip is open.

Responsible for the tip opening are (i) the local diffusive loss towards the flame front of H2 and H such that
locally the equivalence ratio falls below the lean flammability limit and (ii) local flame extinction due to



Table 2

Summary of computed hydrogen–air flames

/ 0.5 1 2.5 5

SL (m/s) 0.39 2.35 2.74 1076

SG (m/s) (constant TW) 0.77 2.88 3.03 1085

SG (m/s) (adiabatic wall) 1.39 4.16 3.95 1080
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excessive flame curvature. It is seen that with increasing / both the ratio SG=SL and the tip curvature

decrease consistently to each other, cf. the above section on the ozone flame. Shown in Fig. 11 are contour

plots for the stoichiometric hydrogen–air flame of Fig. 10 for, from top to bottom, the temperature and the

mass fractions of H, OH, O and H2O2. These results are as to be expected on physical grounds and clearly

demonstrate the capability of the numerical approach to capture even sensible details of complex flame

structures.

Similar as in Fig. 10, shown in Fig. 12 is a sequence of flameshapes and flowfields, but now for a constant

wall temperature of 300 K. Again, from top to bottom, the pictures pertain to / ¼ 0:5, 1, 2.5 and 5, re-
spectively. It is seen that for the lean to moderately rich mixtures flame structures are predicted that consist

of two meniscus-like flames in which, in the vicinity of the plane of symmetry, a tulip flame is embedded.
Fig. 10. Streamlines and heat-release rate for hydrogen–air flames subject to no-slip and adiabatic-wall boundary conditions for, from

top to bottom, / ¼ 0:5; 1; 2:5 and 5. Mode of presentation as in Fig. 4.



Fig. 11. Contour plots for the stoichiometric hydrogen–air flame of Fig. 10 for, from top to bottom, the temperature and the mass

fractions of H, OH, O and H2O2.
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Only for the very rich mixtures pure meniscus flames are established. The leanest of the four flames has an

open flame tip for the reasons already discussed above.
7. Summary

This paper presents a finite element formulation for the simulation of laminar, chemically reactive flows

in the low Mach number regime. The formulation is based on the governing equations of mass, species
mass, momentum and energy.

Stabilization terms leading to streamline upwinding are introduced into the governing equations in order

to avoid numerical instabilities in convection-dominated regions of the flow. These terms are quantified

according to the local and instantaneous magnitude of the relevant characteristic non-dimensional

parameters.

Discretization of the variational formulation of the governing equations is carried out using the standard

Galerkin Method employing triangular Taylor–Hood elements. Linearization of the chemical source terms

is achieved by Newton-iterations, linearization of the remaining non-linear terms by Picard-iterations. The
discretization with respect to time is expressed in terms of backward Euler differences. An exception is the



Fig. 12. As Fig. 10, but for constant wall temperature of 300 K.
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continuity equation, where the introduction of a perturbation term leads to significantly shorter computing

times.

In the linearized discrete formulation, the continuity equations and the momentum equations are de-
coupled from the energy and species conservation equations. Hence, at each time or iteration step, rather

than solving one large linear system of equations two smaller systems are solved in succession.

The simulations are carried out on unstructured grids that are subjected to local refinement and ad-

aptation. The self-adaptivity of the grid is controlled by a posteriori residual error indicator.

The considered steadily propagating laminar ozone decomposition and diluted hydrogen/oxygen flames

in flat channels could be handled efficiently with a Galilei transformation. Numerical results for such flames

with different boundary conditions at the wall and varying equivalence ratios are presented. Flames with

meniscus-like and tulip-like flameshapes were found. The significant differences in these flameshapes are
discussed in detail.
Appendix A. Transport and thermodynamic model

Following [35] it is assumed that the diffusion velocity V i, i ¼ 1; :::;N , is composed of three parts, i.e.,
V i ¼ VD þ VT þ Vc: ðA:1Þ
i i
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Here VD
i is the ordinary-diffusion velocity for which an approximation recommended by Hirschfelder and

Curtiss [36,37],

VD
i ¼ �Di

Xi
rXi; i ¼ 1; . . . ;N ðA:2Þ

is adopted; here Xi denotes the mole fraction of species i and Di is its mixture-averaged diffusion coefficient
which is given explicitly in terms of the binary diffusion coefficients Dij by

Di ¼
1� YiPN
j¼1
j 6¼i
Xj=Dij

: ðA:3Þ

In Eq. (A.1), VT
i is the thermal diffusion velocity,

VT
i ¼ � DT

i

qYiT
rT ; i ¼ 1; . . . ;N ; ðA:4Þ

a non-zero value of which is included only for the light species H and H2. In Eq. (A.4) T is the temperature

and DT
i is the thermal-diffusion coefficient of species i which is evaluated following [37,38]. The correction

velocity Vc appearing in Eq. (A.1) is determined according to [35,39].
The dynamic viscosity and the thermal conductivity of the mixture are calculated from the respective

properties of the pure species according to

l ¼ 1

2

XN
i¼1

Xili

0
@ þ

XN
i¼1

Xi

li

" #�1
1
A ðA:5Þ

and

k ¼ 1

2

XN
i¼1

Xiki

0
@ þ

XN
i¼1

Xi

ki

" #�1
1
A: ðA:6Þ

For details of the evaluation of the species transport coefficients and of the species thermodynamic

properties reference is given to [37,38].
Appendix B. Reaction mechanisms

The following reaction mechanisms are used for the computations in this work (see Tables 3 and 4).
Table 3

Reaction mechanism used for the ozone flames

No. Reaction A (mol, cm, s) n E (kJ/mol)

1 O3 +M0 !O2 +O+M0 4.310E+14 0.00 92.79

2 O2 +O+M0 !O3 +M0 1.745E+13 0.00 )4.12
3 O3 +O! 2O2 1.140E+13 0.00 19.12

4 2O2 !O3 +O 1.042E+13 0.00 417.79

5 2O+M0 !O2 +M0 1.380E+18 )1.00 1.42

6 O2 +M0 ! 2O+M0 3.116E+19 )1.00 496.99



Table 4

Reaction mechanism used for the hydrogen/air flames

No. Reaction A (mol, cm, s) n E (kJ/mol)

1 O2 +H!OH+O 2.000E+14 0.00 70.30

2 OH+O!O2 +H 1.568E+13 0.00 3.52

3 H2 +O!OH+H 5.060E+04 2.67 26.30

4 OH+H!H2 +O 2.222E+04 2.67 18.29

5 H2 +OH!H2O+H 1.000E+08 1.60 13.80

6 H2O+H!H2 +OH 4.312E+08 1.60 76.46

7 OH+OH!H2O+O 1.500E+09 1.14 0.42

8 H2O+O!OH+OH 1.473E+10 1.14 71.09

9 O2 +H+M0 !HO2 +M0 2.300E+18 )0.80 0.00

10 HO2 +M0 !O2 +H+M0 3.190E+18 )0.80 195.39

11 HO2 +H!OH+OH 1.500E+14 0.00 4.20

12 HO2+H!H2 +O2 2.500E+13 0.00 2.90

13 HO2 +OH!H2O+O2 6.000E+13 0.00 0.00

14 HO2 +H!H2O+O 3.000E+13 0.00 7.20

15 HO2 +O!OH+O2 1.800E+13 0.00 )1.70
16 HO2 +HO2 !H2O2 +O2 2.500E+11 0.00 )5.20
17 OH+OH+M0 !H2O2 +M0 3.250E+22 )2.00 0.00

18 H2O2 +M0 !OH+OH+M0 1.692E+24 )2.00 202.29

19 H2O2 +H!H2O+OH 1.000E+13 0.00 15.00

20 H2O2 +OH!H2O+HO2 5.400E+12 0.00 4.20

21 H2O+HO2 !H2O2 +OH 1.802E+13 0.00 134.75

22 H+H+M0 !H2 +M0 1.800E+18 )1.00 0.00

23 OH+H+M0 !H2O+M0 2.200E+22 )2.00 0.00

24 O+O+M0 !O2 +M0 2.900E+17 )1.00 0.00
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Appendix C. Weak formulation of the governing equations for the 2D planar and axisymmetric case

In the following equations c ¼ 0 indicates the planar and c ¼ 1 the axisymmetric case.

C.1. Continuity equation
Z
X
w

ou
ox

�
þ 1

yc
o vycð Þ
oy

�
yc dxþ�

Z
X
ln q

o wuð Þ
ox

�
þ 1

yc
o wvycð Þ

oy

�
yc dx

¼ �
Z
C
w ln q v � nð Þyc ds 8w 2 H 1ðXÞ; ðC:1Þ

with

�
Z
C
w ln qðv � nÞyc ds ¼ �

Z
C
wðln qÞuyc dy þ

Z
C
wðln qÞvyc dx: ðC:2Þ

C.2. Momentum equation in x-direction
Z
X
/q u
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�
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/sxyc ds 8/ 2 V 1ðXÞ: ðC:3Þ
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To evaluate the boundary integral on the r.h.s., two alternatives are available. viz., alternative 1:Z
C
/sxyc ds ¼

Z
C
/ snnð þ sssÞiyc ds ¼

Z
C
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C.3. Momentum equation in y-direction
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C.4. Energy equation
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C.5. Species equations
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Appendix D. Derivation of Eqs. (58)–(60)

For

Kij :¼
owi

oYj
ðD:1Þ

application of the chain-rule yields
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In the following, three alternatives approximations to the matrix Kij are presented, the first two alternatives

being based on (D.2), the third on (D.1). The alternatives are:

(i) Neglecting in (D.2) the sum
P

k Xkðowi=oCkÞ; this corresponds to taking q ¼ const for the purpose of

evaluating owi=oYj. Thus

Kij �
q
Wj

owi

oCj
: ðD:3Þ

(ii) Neglecting in (D.2) the sum
P

k 6¼j Xkðowi=oCkÞ. Thus
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Kij �
qð1� XjÞ

Wj

owj

oCj
: ðD:4Þ

(iii) Defining mij ¼ 0 for ðowi=oCjÞ ¼ 0 and mij ¼ 1 otherwise, and taking

Kij � mijðowi=oYjÞ ðD:5Þ

rather than (D.1).
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